Bimanes. 14. Synthesis and Properties of 4,6-Bis(carboalkoxy)-1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-diones [4,6-Bis(carboalkoxy)-9,10-dioxa-syn-bimanes]. Preparation of the Parent syn-Bimane, syn-(Hydrogen, hydrogen) bimane

Edward M. Kosower,*^{1a,b} Dov Faust,^{1a} Marcia Ben-Shoshan,^{1a} and Israel Goldberg^{1a}

Departments of Chemistry, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel, and the State University of New York, Stony Brook, New York 11794

Received June 28, 1981

The 3-(carboalkoxy)pyrazolin-5-ones derived from dialkyl oxaloacetates or diethyl α -methyloxaloacetate through reaction with hydrazine can be converted into the strongly fluorescent 4,6-bis(carboalkoxy)-1,5-diazabicyclo-[3.3.0] octa-3,6-diene-2,8-diones $[4,6-bis(carboalkoxy)-9,10-dioxa-syn-bimanes, syn-(COOR,R_1)B$ (6), R = CH₃ or CH_3CH_2 , $R_1 = CH_3$, Cl, Br by base treatment of the corresponding chloro or bromo derivative. The structure of one bis ester, 4,6-bis(carbomethoxy)-3,7-dimethyl-1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione [6f, syn- $(COOCH_3, CH_3)B]$, has been determined by X-ray crystallography. Lithium bromide and the esters in CH_3CN or DMF yield via dealkylation and decarboxylation the corresponding syn- $(H,R_1)B$ (11), $(R_1 = H, CH_3, CI, Br, CI, Br, CI, CI)$ I) or the "mixed" bimanes syn-(EtOOC, R_1)(H, R_1)B (10, R_1 = Cl or CH₃). A dicarboxylic acid (R_1 = CH₃; LiBr/CH₃CN/60 °C; two COOCH₃'s) readily decarboxylates. Hydrogenation of halogenated bimanes over Pd/C(AcOH) replaces one or both halogens, the 2H product from syn-(H,Cl)B being the parent syn-bimane, syn-(H,H)B. syn-(COOR,H)B and ICl yield syn-(COOR,I)B, which gives syn-(H,I)B on dealkylation-decarboxylation. Replacement of Cl in syn-(COOCH₂CH₃,Cl)B by C₆H₅S⁻ yields syn-(COOCH₂CH₃,C₆H₅S)B. Both ester groups and halogens shift absorption and fluorescence maxima to longer wavelengths than those recorded for syn-(CH₃,CH₃)B. In ¹H NMR spectra, the β -hydrogens of the syn-bimane appear at considerably lower fields (7.52-8.21 ppm) than the α -hydrogens (5.42-6.13 ppm).

For understanding the chemical and photophysical properties of the 9,10-dioxa-syn-bimanes (1) and the 9,10-dioxa-anti-bimanes (2) (1,5-diazabicyclobicyclo-

[3.3.0] octanediones),²⁻⁸ compounds in which as many substituents as possible were replaced by hydrogen were desired. Bimanes with hydrogens in the position α to the carbonyl (1 and 2, $R_1 = H$) were accessible via hydrogenation of the readily prepared (R2,Cl)B, but bimanes with hydrogen at the β -position (i.e., bimanes in which $R_2 = H$) could not be prepared directly in significant yields. We now report the synthesis of bimanes bearing hydrogen at the β -position, including a preparation of the parent 9,10-dioxa-syn-bimane (1, $R_1 = R_2 = H$), via the compounds with carboalkoxy groups at the β -position.

Results

Synthesis of Bimane Esters. Diethyl oxaloacetate (3a) was readily converted to 3-(carboethoxy)pyrazolin-5one by hydrazine in ethanol. Treatment of the pyrazolinone 4a (R = CH_3CH_2 , R₁ = H) with chlorine in di-

- (1) (a) Tel-Aviv University. (b) State University of New York at Stony Brook.
- (2) Kosower, E. M.; Bernstein, J.; Goldberg, I.; Pazhenchevsky, B.; Goldstein, E., J. Am. Chem. Soc. 1979, 101, 1620.
- (3) Huppert, D.; Dodiuk, H.; Kanety, H.; Kosower, E. M. Chem. Phys. Lett. 1979, 65, 164
- (4) Kosower, E. M.; Pazhenshevsky, B., J. Am. Chem. Soc. 1980, 102, 4983.
- (5) Part 6: Kosower, E. M.; Pazhenchevsky, B.; Dodiuk, H.; Kanety,
- (6) Part 5: Rosower, E. M.; Pazhenchevsky, B.; Doduk, H.; Kanety,
 (6) Part 7: Kosower, E. M.; Pazhenchevsky, B.; Doduk, H.; Ben-Shoshan, M.; Kanety, H. J. Org. Chem. 1981, 46, 1673-1679.
 (7) Part 8: Kosower, E. M.; Kanety, H.; Doduk, H., submitted for
- publication.
- (8) Part 9: Kosower, E. M.; Kanety, H.,; Dodiuk, H.; Hermolin, J. J. Phys. Chem. 1982, in press.

chloromethane led to the 4,4-dichloro-3-(carboethoxy)pyrazolin-5-one (5a). The usual base for the conversion of halopyrazolinones to syn-bimanes, potassium carbonate, gave relatively low yields of bimane. However, N,N-diisopropylethylamine, which favors anti-bimane formation in other cases,⁴ led to the strongly fluorescent syn-(COOEt,Cl)B (6a) in 15-30% yield. The reactions are illustrated in eq 1.

Higher yields of syn-bimane were obtained from the derivatives with carbomethoxy in place of the carboethoxy group. Dimethyl oxalate^{4a} may be converted into ethyl methoxalylacetate (3c) in reasonable yield. Commercial availability of the sodium salt of diethyl oxaloacetate made the direct and indirect syntheses of the (carbomethoxy)-

4,6-Bis(carboalkoxy)-9,10-dioxa-syn-bimanes

pyrazolinone 4b (R = CH₃, R₁ = H) via the (carboethoxy)pyrazolinone 4a (R = CH₃CH₂) (hydrolysis with 15% HCl, esterification with CH₃OH and HCl) roughly equivalent. syn-(COOCH₃,Cl)B (6d; R = CH₃, R₁ = Cl) and syn-(COOCH₃,Br)B (6e; R = CH₃, R₁ = Br) have been prepared in 30% yield.

The dibromopyrazolinone **5b**, prepared by bromination of the pyrazolinone with N-bromosuccinimide, gave syn-(COOEt,Br)B (**6b**) after treatment with base.

Diethyl 3-methyl-2-oxobutanedioate (ethyl ethoxalyl propionate, **3b**) is transformed into the bimane syn-(COOEt,CH₃)B (**6c**) via the pyrazolinone **4c** (R = CH₃CH₂, $R_1 = CH_3$) and 4-chloro-4-methyl-3-carboethoxypyrazolin-5-one (**5c**). The (carbomethoxy)pyrazolinone **4d** (R = CH₃, $R_1 = CH_3$), from the carboethoxy derivative, yields more bimane syn-(COOCH₃,CH₃)B (**6f**; R = CH₃ R₁ = CH₃) than the ethyl ester. An X-ray crystallographic determination of structure confirms the assigned formula for **6f**.

The reaction of equivalent amounts of the two chloropyrazolinones, 5a and 3,4-dimethyl-4-chloropyrazolin-5-one (7), with N,N-diisopropylethylamine gives a 25% yield of the "mixed" bimane syn-(COOCH₂CH₃,Cl)(CH₃,CH₃)B (8) (eq 2).

No *anti*-bis(carboalkoxy)bimane has yet been characterized, although a nonfluorescent compound, which might be an *anti*-bimane, was obtained in some reactions.

Dealkylation of Bimane Esters. The esters 6 were stable toward HBr/CH₃COOH at room temperature or at reflux. Although 15% HCl had no effect at room temperature, destruction of the bimane system (loss of fluorescence) occurred after 24 h at reflux. Trimethylsilyl iodide⁴ caused a rapid loss of fluorescence. Lithium iodide or bromide in either dimethylformamide (DMF)^{9,10} or CH₃CN reacted with the esters to give dealkylated products. The dicarboxylic acids 9 (R₁ = Cl or Br) were ap-

syn-(COOH, R1)B

parently unstable, and the products isolated were bimanes in which hydrogen had replaced the ester group at the β -position. Interrupting the reaction after some hours allowed the isolation of the "mixed" bimanes syn-(COOR,R₁)(H,R₁)B (10) in modest yields. The facile decarboxylation of the β -carboxylic acid provided an excellent route to the β -hydrogen compounds, syn-(H,R₁)B (11; R₁ = H, CH₃, Cl, Br, I). The conversion of syn-(COOCH₂CH₃,Cl) (6a) to syn-(hydrogen,chloro)bimane [syn-(H,Cl)B (11a); R₁ = Cl] occurred via the monodealkylated, monodecarboxylated compound syn-(COOEt,Cl)(H,Cl)B (10a) (eq 3). Another intermediate product which was isolated in a short-term dealkylation

reaction of a diester was syn-(COOEt,CH₃)(H,CH₃)B (10b). Dealkylation-decarboxylation of the monoester 8 with LiBr/DMF produces the "mixed" bimane syn-(H,Cl)-(CH₃,CH₃)B (8a).

In one case, that of syn-(COOCH₃,CH₃)B (6f), the ester was sufficiently reactive so that the reaction could be carried out at around 60 °C in CH₃CN; the dicarboxylic acid 9 (R₁ = CH₃) was stable enough for isolation.

Chemical Properties of Bis(carboalkoxy)-synbimanes. Hydrogenation of syn-bimanes with R_1 = halogen over Pd/C in acetic acid at 70 °C leads to successive replacement of one or two halogens. The two possible products are easily separated from one another and the starting material by chromatography. Conversion of the dichloro bis ester 6d via the "mixed" bimane syn-(COOCH₃,Cl)(COOCH₃,H)B (6g; R = CH₃, R₁ = Cl, R₁' = H) to syn-(COOCH₃,H)B (6h; R = CH₃, R₁ = H) is illustrated in eq 4.

The dichloro bis ester 6a is unreactive toward bromine. The dimethyl bis ester 6c is recovered unchanged after attempted reaction with 1 or 2 equiv of bromine; a bis-(bromomethyl) derivative (6i) is obtained by reaction with N-bromosuccinimide and benzoyl peroxide in CCl₄ (eq 5).

Halogenation of the bis(carboalkoxy)-substituted bimane ring is successful in the cases in which $R_1 = H$, and reaction with iodine monochloride is the best route to the iodobimane derivatives, as in the conversion of **6h** to **6j** ($R = CH_3$, $R_1 = I$).

The syn-(COOR,Cl)B (6d) reacted rapidly with $C_{e}H_{s}SLi/THF$ at room temperature to produce the bis-

⁽⁹⁾ Dean, P. D. G. J. Chem. Soc. 1965, 6655.

⁽¹⁰⁾ Elsinger, F. Org. Synth. 1965, 45, 7.

Figure 1. Molecular structure of syn-(COOCH₃,CH₃)B.

(phenylthio) derivative syn-(COOCH₃,SC₆H₅)B (12), which exhibited a beautiful carmine red fluorescence on the TLC plate. The reaction is shown in eq 6.

Chemical Properties of β -Hydrogen syn-Bimanes. Hydrogenation of either syn-(H,Cl)B (11a) or syn-(H,Br)B (11b) over Pd/C in AcOH produced the parent compound of the 9,10-dioxa-syn-bimane series, syn-(H,H)B (11e, R₁ = H). The starting material and the two products differ in chromatographic mobility (TLC), and, in addition, the fluorescence of the three materials is strikingly different. syn-(H,Cl)B exhibits a blue fluorescence, the "mixed" bimane syn-(H,Cl)(H,H)B (13a; R₁ = Cl,R₁' = H) a blueviolet fluorescence. A sequence is shown in eq 7 for syn-(H,Cl)B as a reactant.

Bromination of the "mixed" bimane syn-(H,Cl)(H,H)B (13) produced the bromo-chloro bimane syn-(H,Cl)(H,-Br)B (13b; $R_1 = Cl$, $R_1' = Br$). Iodination of syn-(H,H)B with ICl leads to the bis-iodo derivative, syn-(H,I)B (11d).

X-ray Crystallographic Structure of syn- $(COOH_3, CH_3)B$. The structure of syn- $(COOCH_3, CH_3)B$ (6f) was determined by X-ray crystallography to confirm assignment of the syn arrangement, made on the basis of the strong fluorescence exhibited by 6f and all related molecules. The overall molecular structure is shown in Figure 1; detailed geometric data are given in Table I. The bimane system was found to be nonplanar, with a dihedral angle $\alpha = 161.2^{\circ}$ between the mean planes of the two five-membered rings. This conformation is intermediate between those previously reported, which vary from planar (or nearly planar) to bent ($\alpha = 140^{\circ}$).^{11,12} The significant deviation from planarity in the dimethyl ester may result from a fairly strong intramolecular O...C=O interaction involving the two ester groups. This is suggested by a rather short nonbonding distance O¹⁷...C¹⁰ of 2.728 (5) Å (the O¹⁷...C¹⁰=O¹⁶ approach angle is 84.4°) and a marked

atoms	distance, A	atoms	distance, A
C2-O13	1.221(5)	C6-014	1.215(5)
C1-N	1.419 (6)	C6-N	1.405 (6)
C1-C2	1.452(6)	C6-O5	1.455(5)
C2-C7	1.487(6)	C5-C8	1.476 (6)
C2-C3	1.353(5)	C5-C4	1.355(5)
C3-N	1.382(5)	C4-N	1.396 (5)
C3-C9	1.491(5)	C4-C10	1.479 (5)
C9-O15	1.201(6)	C10-O16	1.201 (6)
C9-017	1.313(5)	C10-O18	1.320 (6)
C11-O17	1.457(5)	C12-O18	1.464(5)
N-N	1.390 (4)		
atoms	angle, deg	atoms	angle, deg
N-C1-C2	105.3 (3)	N-C6-C5	104.9 (3)
N-C1-O13	123.5(1)	N-C6-O14	124.5(4)
O13-C1-C2	131.2(4)	O14-C6-C5	130.5(4)
C1-C2-C3	107.4(4)	C6-C5-C4	108.2(4)
C1-C2-C7	123.4(4)	C6-C5-C8	122.2(4)
C3-C2-C7	129.1 (4)	C4-C5-C8	129.5(3)
C9-O17-C11	116.6 (3)	C5-C4-N	109.9 (3)
C2-C3-N	110.9 (3)	C5-C4-C10	128.6(4)
C2-C3-C9	127.5(4)	N-C4-C10	120.2(3)
N-C3-C9	121.6(3)	C4-C10-O18	110.3 (4)
C3-C9-O17	110.7(4)	C4-C10-O16	123.8(4)
C3-C9-O15	122.5(4)	O16-C10-O18	125.7(3)
O15-C9-O17	126.7(4)	C10-C18-C12	116.7 (4)
C1-N-C6	136.5(4)	C3-N-C4	139.8 (4)
C1-N-N	108.9 (3)	C3-N-N	107.3(3)
C6-N-N	109.7 (3)	C4-N-N	107.2(3)

out-of-plane distortion of the carbonyl carbon atom toward O^{17} (C¹⁰ is displaced about 0.03 Å from the plane defined by the three atoms bonded to it).¹³ Each carbomethoxy group is twisted by a different amount with respect to the plane of the adjacent ring (Figure 1), with the dihedral angle between their mean planes being 42°. Crystal forces appear to have little influence on the molecular geometry, as all intermolecular distances are greater than or approximately equal to the sums of the van der Waals radii. The distribution of bond distances and angles in *syn*-(COOCH₃,CH₃)B resembles those observed in other dioxabimane structures and reflects some π electron delocalization.^{11,12}

Spectroscopic Properties of syn-Bimanes. The UV-visible and fluorescence maxima for the syn-bimanes are summarized in Table II. A COOR group at the β -position and/or halogen at the α -position moves the absorption and emission maxima to longer wavelengths than those found for molecules with a β -hydrogen substituent. The compound which shows the longest wavelength absorption maximum of those with both ester and halogen groups is syn-(COOCH₂CH₃,I)B, with λ_{max} at 423 nm (ϵ 12500); the shortest long-wavelength absorption maximum is found for syn-(H,H)B with λ_{max} at 368 nm (ϵ 6200). The positions of the emission maxima vary accordingly, with 500 nm ($\phi_{\rm F}$ 0.15) for the iodo derivative and 398 nm ($\phi_{\rm F}$ 1.0) for syn-(H,H)B. The longest wavelength maximum thus far found for any syn-bimane is that for syn-

⁽¹¹⁾ Bernstein, J.; Goldstein, E.; Goldberg, I., Cryst. Struct. Commun. 1980, 9, 295.

⁽¹²⁾ Goldberg, I. Cryst. Struct. Commun. 1980, 9, 329.

⁽¹³⁾ Bürgi, H. B.; Dunitz, J. D.; Shefter, E. Acta Crystallogr., Sect. B 1974, B30, 1517.

4.6-Bis(carboalkoxy)-9.10-dioxa-syn-bimanes

Table II. Ultraviolet-Visible Absorption and Emission Maxima for 9,10-Dioxa-syn-bimanes in Acetonitrile

	absorption,	
R_2, R_3 for	λ_{max} , nm	emission, λ_{max} ,
$syn(\mathbf{R}_2,\mathbf{R}_1)\mathbf{B}$	$(\epsilon_{\max})^a$	nm $(\phi_{\mathbf{F}})$
H, H	368 (6200),	398, 415 sh (1.0)
	218 (7600)	
H, CH ₃	373 (7500),	436, 460 sh(0.60)
	252 (6000),	
	226 (11700)	440 405 h (0.40)
H, Cl	389 (8100),	$443, 465 \mathrm{sn}(0.40)$
11 D-	231 (13800)	115 165 mb (0.15)
H, Br	392(8700),	445, 465 Sti (0.45)
ur	200 (0200)	454 480 ch (0.45)
п, 1	250 (6400)	404, 400 SH (0.40)
	200 (0400),	
нсі∙нн	380 (5800)	422 (0.92)
,,,	223 (6400)	
H. Br: H. Cl	387 (6900).	444 (0.62)
,,	230 (6900)	
H. Cl; CH., CH.	376 (4200).	443, 460 sh (0.76)
, , , , , , ,	230 (5800)	
COOEt, Cl; CH ₃ , CH ₃	375 (7500),	441, 460 sh (0.60)
	230 (13400)	
COOEt, CH,	390 (4700),	465, 500 sh (0.33)
	252 (9800)	
$COOCH_3$, CH_3	390 (4900),	$465,500\mathrm{sh}(0.50)$
acour are b	253 (9500)	500 (0 10)
COOH, CH ₃ ^o	393 (4100),	520 (0.12)
COOF+ U	243(11000)	490 450 -h (0 50)
COOLT, H	385 (8100),	$430, 450 \mathrm{sn}(0.50)$
COOCH H	240 (0400)	430 455 sh (0.65)
COOCH3, 11	246 (9000),	400, 400 sti (0.00)
COOEt CI H CI	409 (5500)	462 490 sh (0.15)
00020, 01, 11, 01	232 (7600)	102, 100 5 (0.10)
COOEt. Cl	403 (6100).	480, 505 sh (0.10)
,	257 (10300)	
COOCH, Cl	401 (6300).	481, 505 sh (0.20)
37	257 (10100)	
COOEt, Br	409 (7000),	470, 500 sh (0.15)
	260 (11000)	,
COOEt, I	423 (12500),	500 (0.15)
	273 (7600),	
	212(12000)	
COOCH ₃ , I	415 (13000),	490 (0.25)
	273 (12700),	
	212 (17300)	F00 (0 005)
COUEt, SC ₆ H ₅	445 (3300),	590 (0.02 7)
	245 (19000)	

^a Shoulders occur in many of the absorption spectra. These are recorded in the appropriate section of the Experimental Section. ^b In water.

 $(COOCH_2CH_3,SC_6H_5)B$ (12) at 445 nm (ϵ 3300). Although the quantum yield of fluorescence is low in solution (λ_{max} 590 nm (dioxane)) for 12, a carmine red fluorescence is easily seen on TLC plates. Most measurements were done with acetonitrile solutions.

¹H NMR Spectra of syn-Bimanes. The chemical shifts for the hydrogens of the alkyl groups are at somewhat lower fields than those for an alkyl benzoate (4.02)vs. 3.88 ppm in the case of CH_3). The chemical shifts of the hydrogens directly attached to the bimane ring at the α -position are similar to those already reported (5.65 ppm) for syn-(H,H)B) but are shifted to lower field in compounds with an ester group at the β -position (5.98–6.13) ppm). The most interesting chemical shifts are those for the β -hydrogens directly attached to the bimane ring, in which the chemical shift varies from 7.52 to 8.21 ppm, depending upon the nature of the other substituents. The hydrogens of syn-(H,H)B split one another, the coupling constant being 4 Hz. The β -hydrogens in the "mixed" bimane syn-(H,Cl)(H,Br)B appear at slightly different

Scheme I

positions, 7.95 and 7.98 ppm, exactly as might have been expected from the two symmetrical compounds syn-(H,-Br)B (7.95 ppm) and syn-(H,Cl)B (7.98 ppm).

Infrared and Mass Spectra. The infrared spectra show ring carbonyl bands and ester carbonyl groups at somewhat shorter wavelengths. IR maxima are listed in the Experimental Section. Dramatic changes in infrared spectra are observed with changes in the degree of organization in the solid state for syn-(H,X)B; these will be communicated separately.¹⁴ Mass spectra were obtained for all bimanes; parent peaks were observed in all cases which corresponded to the expected molecular weight for the compound in question, except for the bis(bromomethyl) derivative 6i, with a peak corresponding to the loss of two bromine atoms.

Discussion

Bimanes bearing one or two hydrogens at the β -position have now been prepared from pyrazolinones carrying a removable carboalkoxy group in the 3-position. The striking changes in the ultraviolet-visible and near-IR absorption spectra of one of the products, syn-(H,Cl)B (11a), in thin films¹⁴ and an X-ray crystallographic study of the structure of syn-(H,Cl)B (confirmation of the structure)¹⁵ have been communicated separately.

The bimane synthesis (for which a mechanism has been proposed previously⁴) succeeds with halopyrazolinones in which a carboalkoxy group is conjugated with the pyrazolin-5-one ring. Apparently, a 3-substituent into which charge can be delocalized does not decrease the reactivities of the proposed diazacyclopentadienone and diazo intermediates (see Scheme I). Bimanes have been prepared from pyrazolinones bearing phenyl groups at the 3-position; no other pyrazolinone with a conjugating substituent at the 3-position has been investigated.

Only syn derivatives have been isolated and characterized from the reaction of base with 4-halo-3-(carboalkoxy)pyrazolinones, in yields as high as 50%. In some reactions, materials isolated in small quantities from late fractions (i.e., an ususual position of elution for anti-bimanes) have properties which suggest that these might be anti-bimanes. The syn-carboalkoxy derivatives are moderately sensitive to base; the kinetics of the ring-opening reaction¹⁶ indicate that anti-bimanes are 2-3 times as reactive toward hydroxide ion as the corresponding syn derivatives. Attempted purification of the new compounds results in considerable decomposition. It is thus conceivable that anti compounds were formed and then de-

⁽¹⁴⁾ Part 11: Kosower, E. M.; Hermolin, J.; Ben-Shoshan, M.; Faust, D., J. Org. Chem. 1981, 46, 4578.

 ⁽¹⁵⁾ Goldberg, I; Kosower, E. M. J. Phys. Chem. 1982, in press.
 (16) Kanety, H.; Pazhenchevsky, B.; Kosower, E. M., in preparation

for publication.

stroved during the reaction.

The most suitable base for the (carboalkoxy)bimane synthesis is N.N-diisopropylethylamine which yields anti derivatives with 3-alkylpyrazolinones. We suggest that the electron-withdrawing carboalkoxy group favors nucleophilic addition at the diazene nitrogen (β) farthest from the carbonyl group; an electron-supplying alkyl group at the 3-position favors anion addition at the diazene nitrogen (α) next to the carbonyl. The relationship of the negative charge introduced (by the nucleophilic addition) into the diazene system and the negative charge already present in the substrate molecule in the transition state is indicated in Scheme I by resonance forms for the intermediate diazacyclopentadienone. For the heterogeneous reaction of the halopyrazolinones with wet potassium carbonate, from which syn-bimanes are the major product, binding of the basic oxygen of the carbonyl to a potassium ion on the surface may block the approach of the nucleophile to the "favored" (α) diazene nitrogen, and reaction at the β -nitrogen predominates.

Decarboxylation is the critical step in the formation of β -hydrogen-substituted bimanes. The dealkylation-decarboxylation reactions are summarized in eq 8.

Utilizing the reactions illustrated in eq 8, a dicarboxylic acid (9) and monocarboalkoxy bimanes (10) have been isolated. As expected, loss of the second carbon dioxide is slower than that of the first. The decarboxylation of bimane β -carboxylic acids is quite facile (the stabilities of the carboxylate derivatives are reminiscent of those of 1-alkylpyridinium-2-carboxylate betaines¹⁷) and probably proceeds by a decarboxylation-protonation sequence (eq 9; cf. discussion by Noto¹⁸).

$$BCOO^{-} \to B^{-} \xrightarrow{H^{+}} BH \tag{9}$$

The decarboxylation mechanism (eq 9) implies an acidic β -position; in NMR spectra, the β -hydrogen signals are found at lower fields (7.52–8.21 ppm) than the α -hydrogens (5.42–6.13 ppm). The chemical shift for the β -hydrogen in δ -pyrone, a conjugated system similar to syn-(H,H)B (11e), is 8.05 ppm.¹⁹ The decarboxylation of the γ -pyrone-β-carboxylic acid is reported as facile (Cu, 160 °C),²⁰ although not as rapid as that of a bimane- β -carboxylic acid.

The ¹H NMR spectrum of syn-(H,H)B (11e) is beautifully simple, the two hydrogens exhibiting doublet signals at 5.60 and 7.76 ppm, with a splitting of 4 Hz. The pK_a of the bimanedicarboxylic acid 9 ($R_1 = CH_3$) is 2.3, reflecting the electron-withdrawing character of the bimane ring at the β -position.

Thiophenoxide ion attacks the α -position of syn- $(COOCH_2CH_3,Cl)B$ (6a) to give under rather mild conditions syn-(COOCH₂CH₃,SC₆H₅)B (eq 6).

The (carboalkoxy) bimanes, especially the bis(carboalkoxy) bimanes, are characterized by a beautiful, bright yellow appearance and an obvious strong fluorescence. The β -

hydrogen bimanes are usually strongly vellow in the crystalline form. Comparison of the absorption and fluorescence data given in Table II for solutions indicates that a greater difference in color between the crystals of bimanes with a β -carboalkoxy group and those with a hydrogen in the β -position might have been expected. It turns out that the absorption bands of the β -hydrogen bimanes are shifted to longer wavelengths in the crystal due to intermolecular interactions as the result of alterations in the organization of the solid state.^{14,15}

Absorption and fluorescence maxima of bimanes are influenced by substituents,⁴ and the parent 9,10-dioxasyn-bimane, syn-(H,H)B, provides a useful reference point. In CH₃CN, syn-(H,H)B has an absorption maximum at 368 nm; two β -carboalkoxy groups shift the absorption maximum to 385 nm. Halogen at the α -position also has a large effect, syn-(H,Cl)B having a maximum at 389 nm. Replacing the chlorine with bromine [syn-(H,Br)B] shifts the maximum further to 392 nm, and with iodine [Syn-(H,I)B] the λ_{max} is at 410 nm.

A " β -alkyl group effect", a shift of the absorption maximum to shorter wavelengths with the replacement of a β -hydrogen by an alkyl group, can be recognized. The classical Woodward rules for absorption of α,β -unsaturated carbonyl compounds suggest precisely the opposite result. The λ_{max} and the changes with respect to syn-(H,H)B (368 nm) are as follows: α -CH₃, syn-(H,CH₃)B, 373 nm (+5 nm, $\Delta E_{\rm T} = 1.0 \text{ kcal/mol}$; β -CH₃, syn-(CH₃,H)B, 361 nm (-7 nm, $\Delta E_{\rm T} = 1.5 \text{ kcal/mol}$); α - and β -CH₃, syn-(CH₃,CH₃)B, 368 nm (no shift).

The compounds having both β -carboalkoxy groups and α -substituents which are polarizable (iodo or phenylthio) absorb at the longest wavelengths yet found for 9,10-disyn-(COOCH₃,I)B and synoxa-syn-bimanes. $(COOCH_2CH_3, SC_6H_5)B$ have absorption maxima in CH₃CN at 415 and 445 nm, respectively.

The shortest wavelength fluorescence emission yet found for 9,10-dioxa-syn-bimanes is that for the parent compound of the series. syn-(H,H)B, at 398 nm in CH₃CN. The " β -alkyl group effect" is less apparent in emission than in absorption, since all alkyl group substituents shift the emission maximum to longer wavelengths. However, a β -alkyl group is clearly much less effective in this regard than an α -methyl substituent, as seen by the following comparison with syn-(H,H)B (398 nm) for a CH₃CN solution: syn-(CH₃,H)B, 402 nm (+4 nm); syn-(H,CH₃)B, 436 nm (+38 nm); syn-(CH₃,CH₃)B, 444 nm (+46 nm).

A β -carboalkoxy group shifts the fluorescence emission maximum to longer wavelengths [398 \rightarrow 430 nm for syn-(COOCH₃,H)B]; various α -substituents move the maximum to longer wavelengths (in nanometers from 430 nm: CH_3 , +35; Cl, +51; Br, +40; I, +60; SC_6H_5 , +90).

The quantum yields of fluorescence are generally high, reaching close to 1.0 for syn-(H,H)B in CH₃CN and ranging from 0.10 to 0.65 for most of the other compounds. One compound has a rather low quantum yields of fluorescence, syn-(COOCH₂CH₃,SC₆H₅)B (0.027). The solvent effect on the quantum yield of fluorescence was examined only for syn-(COOCH₂CH₃,CH₃)B and found to change from 0.83 in cyclohexane to 0.33 in CH₃CN and 0.03 in H₂O. The carbomethoxy compounds invariably have higher quantum yields of fluorescence than the carboethoxy derivatives. This difference may imply that the alkyl group of the ester has some influence on the conjugation between the two rings. The structure of the syn-(COOCH₃,CH₃)B determined by X-ray crystallography indicates that the two rings are not coplanar in the crystal; other considerations, discussed in great detail in connection with the photo-

⁽¹⁷⁾ Kosower, E. M.; Patton, J. W. J. Org. Chem. 1961, 26, 1318.
(18) Noto, R. J. Chem. Soc., Perkin Trans. 2 1980, 1627.
(19) Jackman, L. M.; Sternhell, S. "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd ed.; Pergamon Press. Oxford 1960, p. 104.

 ⁽²⁰⁾ Katritsky, A. R.; Lagowski, J. M., "Heterocyclic Chemistry";
 Methuen: London, 1960; p 98.

physical behavior of the bimanes, also suggest that the *syn*-bimanes are not completely planar in solution. We may thus infer that the carboethoxy compounds are somewhat more bent than the carbomethoxy compounds in solution.

Experimental Section

The following instruments were used for experimental measurements: Cary Model 17 spectrophotometer (UV-vis spectra), JEOL 60 (60 MHz), Varian EM-360, and Bruker WH-90 (NMR spectra), Hitachi Perkin-Elmer MPF-4 fluorescence spectrometer, Perkin-Elmer Model 257 (IR spectra), Du Pont 21-491B mass spectrometer, Cahn Electrobalance (for <2 mg weights), Enraf-Nonius CAD 4 X-ray diffractometer (X-ray structural data).

3-(Carboethoxy)-4,4-dichloro-2-pyrazolin-5-one (5a). Surfuric acid (4.9 g, 0.05 mol) was added dropwise to a suspension of sodium diethyl oxalacetate (Fluka; 10.5 g, 0.05 mol) in ether (500 mL), the Na₂SO₄ was filtered off after the addition, excess acid was removed by treatment with saturated KHCO₃, and the ether was removed to leave diethyl oxalacetate (**3a**; 9.3 g, 0.05 mol). Hydrazine hydrate (2.5 g, 0.05 mol) in ethanol (5 mL) was added dropwise to the ester in ethanol (40 mL), the mixture refluxed for 0.5 h, the solvent evaporated, and the residue crystallized from water to yield 3-(carboethoxy)-2-pyrazolin-5-one (**4a**): 5.4 g (70%); mp 175–178 °C (lit.²¹ mp 179 °C); ¹H NMR (CDCl₃) 1.51 (t, 3 H), 4.56 (q, 2 H), 9.87 (br s, 1 H) ppm; IR (KBr) 3340, 3000, 1706, 1500 cm⁻¹; mass spectrum, m/e 156 (M⁺).

Chlorine was passed through a stirred suspension of 4a (7.8 g, 0.05 mol) in CH₂Cl₂ (25 mL) until a clear greenish solution had been obtained. Excess chlorine and HCl were removed with a stream of air, and the solvent was evaporated to yield the product as a colorless oil which solidified at room temperature: 11.0 g (98%); mp 83–85 °C; IR (KBr) 3260, 1775, 1685, 1560, 1475 cm⁻¹; ¹H NMR (CDCl₃) 1.50 (t, 3 H), 4.60 (q, 2 H), 9.85 (br s, 1 H, lost with D₂O) ppm; UV (CH₃CN): λ 295 nm (ϵ_{max} 6500); mass spectrum, m/e 224 (M⁺).

3-(Carboethoxy)-4,4-dibromo-2-pyrazolin-5-one (5b). N-Bromosuccinimide (1.8 g, 0.1 mol) was added over 5 min to a suspension of **4a** (7.8 g, 0.05 mol) in CH_2Cl_2 (250 mL). After a clear orange solution had been obtained, the solvent was removed and the oily residue triturated several times with CCl_4 , yielding after removal of the CCl_4 a solid: mp 89–90 °C; IR and ¹H NMR spectra were similar to those of **5a**; mass spectrum, m/e 314 (M⁺).

3-(Carbomethoxy)-4,4-dichloro-2-pyrazolin-5-one (5e). The carboethoxy compound 4a was converted in 95% yield to 3-(carbomethoxy)-2-pyrazolin-5-one (4b) by refluxing in 15% HCl (6 mL/g) for 15 h, removing the solvent, refluxing the acid thus formed in CH₃OH saturated with HCl for 15 h, and evaporating the solvent to yield 4b as an off-white solid: mp 190–191 °C (lit.²¹ yellowish crystals, mp 226.5–227.5 °C); mass spectrum, m/e 142 (M⁺); IR (KBr) 3350, 3000, 1710, 1500 cm⁻¹; ¹H NMR (Me₂SO-d₆) 3.70 (s, 3 H), 4.56 (s, 2 H) ppm.

Condensation Procedure. A mixture of dimethyl oxalate (50.0 g, 0.43 mol) and ethyl acetate (37.0 g, 0.42 mol) in dry ether (400 mL) was added dropwise to a heated suspension of clean sodium hydride (ca. 12 g) in dry tetrahydrofuran (100 mL) with mechanical stirring. After a yellowish color appeared, the heating was discontinued (30-60 min), the addition completed (2-3 h), and stirring continued for 12 h. The mixture was cooled with ice, a solution of H_2SO_4 in ether added, the solution filtered, and the solvent evaporated to yield an oil (55 g) containing mostly ethyl methoxalylacetate. The crude ester was refluxed with hydrazine (14 g) in methanol (300 mL), the solution filtered while hot (the pyrazolinone derived from ethyl acetoacetate is not soluble), and the methanol evaporated to yield overall.

Chlorination of 4b was carried out as described for 4a to yield 5e as a solid product: 100% yield; mp 87-90 °C; IR (KBr) 3250, 1755, 1745, 1545 cm⁻¹; ¹H NMR (CDCl₃) 3.98 (s, 3 H), 9.70 (br s, 1 H, lost with D₂O) ppm; mass spectrum, m/e 210 (M⁺).

3-(Carbomethoxy)-4,4-dibromo-2-pyrazolin-5-one (5f). Bromination of 4b was carried out as described for 4a to yield **5f** as a solid: mp 92–94 °C; IR (KBr) 3250, 1755, 1550, 1470 cm⁻¹; ¹H NMR like that for **5e**; mass spectrum, m/e 300 (M⁺).

3-(Carboethoxy)-4-chloro-4-methyl-2-pyrazolin-5-one (5c). Diethyl 3-methyl-2-oxobutanedioate (ethyl ethoxalyl propionate, 3b) was synthesized from ethyl propionate and diethyl oxalate by a modification of the published procedure²² using NaOEt made from molar equivalents of NaH and EtOH in dry Et₂O. The pyrazolinone 4c was obtained as described for 4a in 70% yield after crystallization from EtOH-H₂O (3:1) as a white solid: mp 169 °C; IR (KBr) 3310 (br), 1710, 1600, 1500 cm⁻¹; ¹H NMR (Me₂SO-d₆) 1.20 (t, 3 H), 1.90 (s, 3 H), 4.17 (q, 2 H), 8.32 (s, 1 H); mass spectrum, m/e 170 (M⁺). Chlorination was effected as described for 4a to yield 5c as a colorless oil which solidified at room temperature: 9.0 g (90%); mp 90-92 °C; IR (CHCl₃) 3360, 2980, 1770, 1750, 1720, 1570 cm⁻¹; ¹H NMR (CDCl₃) 1.45 (t, 3 H), 1.99 (s, 3 H), 4.45 (q, 2 H), 3.31 (s, 1 H) ppm; mass spectrum, m/e 205 (M⁺).

3-(Carbomethoxy)-4-chloro-4-methyl-2-pyrazolin-5-one (5d). Hydrolysis of the ethyl ester was carried out as in the case of 4a except that CH₃CN was added at the end, the solvent evaporated, and the solid residue triturated with CH₃CN prior to filtration. The acid was a white solid [mp 320 °C; IR (KBr) 3410, 3320 (br), 1670 cm⁻¹], was converted to the methyl ester (cf. procedure for 4b), and was chlorinated as noted for 4a to give 5d in high yield as a crystalline solid: mp 94 °C; IR (CHCl₃) 3300, 2990, 1750, 1720, 1560 cm⁻¹; ¹H NMR (CDCl₃) 1.98 (s, 3 H), 3.50 (s, 1 H), 3.95 (s, 3 H) ppm; mass spectrum, m/e 190 (M⁺).

9,10-Dioxa-syn-(carboalkoxy,halo or methyl)bimanes 6a-f. N,N-Diisopropylethylamine (0.64 g, 0.05 mmol) in CH_2Cl_2 (5 mL) was added over 30 min with stirring to 3-(carboethoxy)-4,4-dichloro-2-pyrazolin-5-one (5a; 1.12 g, 5.0 mmol) in CH_2Cl_2 (10 mL) cooled to -10 °C. The reaction mixture became red-black and exhibited a strong green fluorescence. After the addition was complete, the solvent was evaporated and the residue quickly chromatographed on silica gel (Merck 7754) with CH_2Cl_2 as the eluant. A yellow, strongly fluorescent fraction provided the product (6a) as a yellow solid, 175 mg (10%). Reactions involving smaller quantities gave yields up to 30%. Application of the same procedure to the dibromo compound 5b gave 15% yields of 6b. Use of the methyl ester 5d in place of the ethyl ester gave 6d as a product in 30% yield.

9,10-Dioxa-syn -(carboethoxy,chloro)bimane [syn - (COOCH₃,Cl)B, 6a]: yellow crystals (from *i*-PrOH-Et₂O); mp 107-110 °C; IR(KBr): 3000, 2950, 1755, 1625, 1550, 1470, 1420, 1400, 1350, 1310, 1230, 1180, 1130, 1000 cm⁻¹; ¹H NMR (CDCl₃) 1.44 (t, 3 H), 4.45 (q, 2 H); UV (CH₃CN) λ 403 nm (ϵ_{max} 6080), 258 (10300); fluorescence (CH₃CN) 465 nm, 490 (sh), $\phi_{\rm F}$ 0.1; mass spectrum, mass 348 (M⁺). Anal. Calcd for C₁₂H₁₀N₂O₆Cl₂: C, 41.29; H, 2.86; N, 8.02. Found: C, 41.21; H, 2.33; N, 7.86.

9,10-Dioxa-*syn*-(carbomethoxy,chloro)bimane [*syn*-COOCH₃,Cl)B, 6d]: yellow crystals (from *i*-PrOH); mp 145 °C; IR (KBr) 3000, 1785, 1740, 1710, 1435, 1370, 1175, 1140, 905 cm⁻¹; ¹H NMR (CDCl₃) 4.02 (s) ppm; UV (CH₃CN) λ 401 nm (ϵ_{max} 6300), 257 (10 100); fluorescence (CH₃CN) 481 nm, 505 (sh), $\phi_{\rm F}$ 0.2; mass spectrum, *m/e* 320 (M⁺).

9,10-Dioxa-*syn*-(carboethoxy,bromo)bimane [*syn*-(COOCH₂CH₃,**Br**)**B**, 6b]: yellow crystals (from *i*-PrOH-Et₂O); mp 120-122 °C; IR; (KBr) 3000, 1780, 1745, 1730, 1710, 1590, 1550, 1450, 1390, 1380, 1345, 1295, 1270, 1210, 1160, 1125, 1100, 1040, 1010 cm⁻¹; ¹H NMR (CDCl₃) 1.40 (t, 3 H), 4.45 (q, 2 H). UV (CH₃CN) 409 nm (ϵ_{max} 7000), 260 (11000); fluorescence (CH₃CN) 470 nm, 500 (sh), $\phi_{\rm F}$ 0.15. Anal. Calcd for C₁₂H₁₀N₂O₆Br₂: C, 32.91; H, 2.28; N, 6.39. Found: C, 32.93; H, 2.02; N, 6.39.

Procedures for the syn-(carboethoxy,methyl)bimane (6c) (20% yield) and syn-(carboethoxy,methyl)bimane (6f; 38% yield) were carried out as described above for the preparation of 6a except that the reaction mixtures were maintained at 0 °C instead of -10 °C during the addition of the base.

9,10-Dioxa-*syn*-(carboethoxy,methyl)bimane [*syn*-(COOCH₂CH₃,CH₃)B, 6c]: yellow crystals (from *i*-PrOH); mp 82 °C; IR (CHCl₃) 2990, 1760, 1730, 1680, 1600, 1550, 1380, 1230, 1130, 1060, 1010, 860 cm⁻¹; ¹H NMR (CDCl₃) 1.45 (t, 3 H), 2.05

⁽²¹⁾ von Rothenberg, R. Ber. Dtsch. Chem. Ges. 1892, 28, 43.

⁽²²⁾ Corson, B. B.; Benson, W. L. "Organic Syntheses"; Wiley: New York, 1943; Collect. Vol. II, p 272.

(s, 3 H), 4.50 (q, 2 H) ppm; UV (CH₃CN) λ 390 nm (ϵ_{max} 4700), 252 (9800); fluorescence (CH₃CN) 465 nm, 500 (sh), $\phi_{\rm F}$ 0.33; mass spectrum, m/e 303 (M⁺).

9,10-Dioxa-syn -(carbomethoxy,methyl)bimane [syn-(COOCH₃,CH₃)B, 6f]: yellow crystals (from *i*-PrOH); mp 85 °C; IR (CHCl₃) 3000, 2950, 1770, 1740, 1685, 1600, 1440, 1380, 1240, 1190, 1120, 1060, 960, 860, 810 cm⁻¹; ¹H NMR (CDCl₃) 2.06 (s, 3 H), 3.95 (s, 3 H) ppm; UV (CH₃CN) λ 390 nm (ϵ_{max} 4900), 253 (9500); fluorescence (CH₃CN) 465 nm, 500 (sh), $\phi_{\rm F}$ 0.50; mass spectrum, m/e 280 (M⁺).

Crystal Structure Analysis of 6f. Crystals were obtained by slow cooling of an isopropyl alcohol solution. Accurate cell parameters were determined by least-squares refinement of the setting angles of 20 reflections automatically centered on an Enraf-Nonius CAD 4 diffractometer.

Crystal data: $C_{12}H_{12}N_2O_4$, $M_r = 248.2$; monoclinic; a = 9.668(2), b = 18.009 (1), c = 7.985 (1) Å; $\beta = 112.77$ (2)°; V = 1282.0 A^3 ; Z = 4; $d_c = 1.286$ g cm⁻³; F(000) = 520; Cu K α radiation, $\lambda_{mean} = 1.5418$ Å; μ (Cu K α) = 7.4 cm⁻¹; space group $P2_1/c$.

The intensities of all reflections with $1 < 2\theta < 70^{\circ}$ were measured on a CAD-4 diffractometer by using Ni-filtered radiation and an $\omega - 2\theta$ scan technique (scan width $0.9 + 0.15 \tan \theta$). Three intensity control reflections were frequently monitored and showed no decay of the crystal. Data were corrected for Lorentz and polarization effects, but not for absorption or secondary extinction. Of the 2010 unique observations, 683 reflections had intensities below a threshold of $3\sigma(I)$ and were given zero weight in refinement calculations.

The structure was solved by direct methods using the MULTAN 74 system of computer programs.²³ Refinement was carried out by full-matrix least-squares methods including the positional and anisotropic thermal parameters for the nonhydrogen atoms. All hydrogen atom positions were obtained from difference maps and given a uniform isotropic thermal parameter of $U = 0.05 \text{ A}^2$ but were not refined. The least-squares function which was minimized was $\sum W(\Delta F)^2$ with $w = 1/\sigma^2(F)$. The final discrepancy index is R = 0.059 for 1322 observations; the five strongest low-angle reflections (110, 020, 121, 202, 212) which appear to suffer from secondary extinction were omitted in the last cycle of refinement. A final difference map was featureless. Positional and thermal atomic parameters are available as supplementary material.

9,10-Dioxa-syn-(carboethoxy,chloro)(methyl,methyl)bimane [syn-(COOCH₂CH₃,Cl)(CH₃,CH₃)B, 8]. N,N-Diisopropylethylamine (1.28 g, 10 mmol) in CH₂Cl₂ (5 mL) was added over 15 min to a cooled (0 °C) solution of dichloropyrazolinone 5a (1.12 g, 5.0 mmol) and dimethylchloropyrazolinone 5c (0.73 g, 5.0 mmol) in CH₂Cl₂ (10 mL). The solvent was then evaporated and the residue chromatographed on silica gel (eluant CH₂Cl₂) to yield syn-(COOCH₂CH₃,Cl)(CH₃,CH₃)B (8) (250 mg, 20%), syn-(CH₃,CH₃)B (370 mg, 35%), and syn-(COOCH₂CH₃,Cl)B (6a: 70 mg, 4%): yellow crystals (from *i*-PrOH); mp 185 °C; IR (KBr) 3000, 1765, 1735, 1705, 1630, 1555, 1470, 1400, 1355, 1260, 1230, 1000 cm⁻¹; ¹H NMR (CDCl₃) 1.41 (t, 3 H), 1.83 (s, 3 H), 2.25 (s, 3 H), 4.48 (q, 2 H) ppm; UV (CH₃CN) λ 375 nm (ϵ_{max} 7500), 250 (sh, 6400), 230 (13 400); fluorescence (CH₃CN) 441 nm, 460 (sh) $\phi_{\rm F}$ 0.60; mass spectrum, m/e 270 (M⁺).

β-Hydrogen Bimanes 10 and 11 through Decarboxylation-Dealkylation. Procedure A. syn-(COOCH₃,Cl)B (6d; 320 mg, 1 mmol) and LiBr (1.0 g, 11.5 mmol) in CH₃CN (10 mL) were refluxed for 15 h. The reaction was followed by TLC, the yellow-green fluoroescence of the starting ester gradually changing to the blue fluorescence of the product in a chromatographically different position. The solvent was evaporated, the residue dissolved in water (20 mL), the solution extracted with CH₂Cl₂ (3 × 100 mL), and the extract dried and evaporated to yield a solid which was chromatographed on silica gel with CH₂Cl₂-EtOAc (4:1) as the eluant. Alternatively, CH₂Cl₂ was added after evaporation of the reaction mixture, and the lithium salts were extracted with water. Pure syn-(H,Cl)B (11a; 92 mg, 45%) was obtained. Use of crude 6a (from bimane synthesis before purification) gave an overall yield from the dichloropyrazolinone 5a of 20% (instead of $0.45 \times 30\%$ or 13.5% if the 6a were purified by column chromatography).

Procedure B. syn-(COOCH₂CH₃Cl)B (**6a**; 348 mg, 1.0 mmol) and LiBr (1.0 g, 11.5 mmol) in dimethylformamide (DMF; Fluka puriss; 10 mL) were heated to 100 °C for 4–6 h, the reaction being followed as noted in procedure A. After the reaction was complete, the solvent was removed by distillation under high vacuum and the product isolated as in procedure A to yield syn-(H,Cl)B (11a), 50 mg (25%).

9,10-Dioxa-syn -(hydrogen,chloro)bimane [syn -(H,Cl)B, 11a]: yellow crystals (from *i*-PrOH); mp 280 °C; IR (KBr) 3160, 3080, 1760, 1675, 1530, 1440, 1290, 1250, 1180, 1120, 900 cm⁻¹; ¹H NMR (CD₃CN) 7.95 (s) ppm; UV (CH₃CN λ 420 nm (ϵ_{max} 4000, sh), 389 (8100), 250 (5500, sh), 231 (10000); fluorescence (CH₃CN) 445 nm, 465 (sh), $\phi_{\rm F}$ 0.40; mass spectrum, m/e 204 (M⁺). Anal. Calcd for C₆H₂N₂O₂Cl₂: C, 35.15; H, 0.97; N, 13.67. Found: C, 34.98; H, 0.43; N, 13.19.

9,10-Dioxa-syn -(hydrogen,bromo)bimane [*syn*-(**H,Br)B**, 11b]: procedure A, 45% from 6e, 25% from 5f; procedure B, 20% from 6b, 10% from 5b; yellow crystals (from *i*-PrOH); mp 272 °C; IR (KBr) 3160, 3100, 1770, 1750, 1695, 1665, 1440, 1300, 1255, 1180, 1130, 980, 900 cm⁻¹; ¹H NMR (CD₃CN) 7.98 (s) ppm; (UV (CH3CN) λ 420 nm (ϵ_{max} 5000, sh), 392 (8700), 255 (5200, sh), 235 (8200); fluorescence (CH₃CN) 445 nm, 465 (sh), $\phi_{\rm F}$ 0.45; mass spectrum, *m/e* 294 (M⁺).

9,10-Dioxa-syn-(hydrogen,iodo)bimane [syn-(H,I)B, 11d]: procedure A, 40% from **6***j*; procedure B, 20% from **6***k* (R = CH₃CH₂, R₁ = I); orange crystals (from *i*-PrOH); mp 265 °C; IR (KBr) 3140, 3070, 1760, 1685, 1500, 1470, 1400, 1250, 1075 cm⁻¹; ¹H NMR (CD₃CN) 7.94 (s) ppm; UV (CH₃CN) λ 410 nm (ϵ_{max} 13700), 250 (6400, sh), 226 (7200); fluorescence (CH₃CN) 454 nm, 480 (sh), $\phi_{\rm F}$ 0.45; mass spectrum, m/e 388 (M⁺). Anal. Calcd for C₆H₂N₂O₂I₂: C, 18.58; H, 0.51; N, 7.22. Found: C, 18.92; N, 7.09.

9,10-Dioxa-syn-(hydrogen,methyl)bimane [syn-(H,CH₃)B, 11c]: procedure A, 70% from 6f (6 h reflux); procedure B, 50% from 6c; yellow crystals (from CH₃CN); mp 272 °C; IR (KBr) 3100, 3085, 1720, 1650, 1420, 1320, 1250, 1200, 1030, 1000, 980, 910, 880, 740, 730, 630 cm⁻¹; ¹H NMR (CD₃CN) 1.819 (d, 3 H), 7.522 (q, 1 H, J = 1.0 Hz) ppm; UV (CH₃CN) λ 373 nm (ϵ_{max} 7500), 252 (6000), 226 (11700); fluorescence (CH₃CN) 436 nm, 460 (sh), $\phi_{\rm F}$ 0.60; mass spectrum, m/e 164 (M⁺).

9,10-Dioxa-syn-(carboethoxy,chloro)(hydrogen,chloro)bimane [syn-(COOCH₂CH₃,Cl)(H,Cl)B, 10a]: procedure B, reaction stopped at stage in which TLC indicated substantial amounts of intermediate; yellow crystals (from *i*-PrOH); mp 253 °C; IR (KBr) 3020, 1775, 1720, 1550, 1450, 1370, 1345, 1200, 1150, 1080, 1010, 920 cm⁻¹; ¹H NMR (CDCl₃) 1.44 (t, 3 H), 4.50 (q, 2 H), 8.20 (s, 1 H) ppm; UV (CH₃CN) λ 409 nm (ϵ_{max} 5500), 232 (7600); fluorescence (CH₃CN) 462 nm, 490 (sh), $\phi_{\rm F}$ 0.13; mass spectrum, m/e 276 (M⁺).

9,10-Dioxa-syn-(hydrogen,chloro)(methyl,methyl)bimane [syn-(H,Cl)(CH₃,CH₃)B 8a]: procedure B, 65% yield of product was obtained from the reaction of LiI (10 mol/mol of ester) and the ethyl ester 8; yellow crystals (from *i*-PrOH); mp 235 °C; IR (KBr) 3020, 1775, 1720, 1550, 1450, 1370, 1295, 1195, 1165, 1080, 1010, 920 cm⁻¹; ¹H NMR (CDCl₃) 1.87 (s, 3 H), 2.26 (s, 3 H), 7.61 (s, 1 H) ppm; UV (CH₃CN) λ 376 nm (ϵ_{max} 4200), 250 (3700, sh), 230 (5800); fluorescence (CH₃CN) 443 nm, 460 (sh), $\phi_{\rm F}$ 0.76; mass spectrum, *m/e* 198 (M⁺).

9,10-Dioxa-syn -(carboxy,methyl)bimane [syn -(COOH,-CH₃)B, 9, (R₁ = CH₃)]. The dimethyl ester 6f (280 mg, 1.0 mmol) and lithium bromide (1.0 g, 11.5 mmol) were heated in CH₃CN (20 mL) at 50 °C for 2 days. The yellow precipitate which formed was filtered off, dispersed in Et₂O, and acidified carefully with concentrated H₂SO₄. The yellow, fluorescent solution was filtered from the precipitated salt and the Et₂O evaporated. CH₃CN was added, and the yellow solid dicarboxylic acid product 9 (80 mg, 32%) was filtered off and dried in a desiccator at room temperature: decomposes above 80–90 °C to syn-(H,CH₃)B (11c); IR (KBr) 3500, 3000, 1730, 1630, 1580, 1400, 1220, 1050, 850, 710, 650 cm⁻¹; ¹H NMR (D₂O) 2.17 (s) ppm; UV (H₂O) λ 393 nm (ϵ_{max} 4100), 243 (11900); fluorescence (H₂O) 520 nm, $\phi_{\rm F}$ 0.12.

 pK_a Determination of 9. The diacid in H₂O (2.0 mL, 0.02 M) was titrated with NaOH (0.10 M) by using a Gilmont microburet and following the pH with a small glass electrode and

⁽²³⁾ Main, P.; Woolfson, M. M.; Lessinger, L.; Germain, G.; Declercq, J. P. "MULTAN 74, A System of Computer Programmes for the Automatic Solution of Crystal Structures from X-ray Diffraction Data"; University of York, York, England, 1974.

an Orion 801 pH meter. Two equivalents of base were consumed over the range from pH 2 to 3; a graphical plot of pH vs. the volume base added indicated an average pK_a of 2.3.

9,10-Dioxa-syn-(hydrogen,hydrogen)bimane [syn-(H,H)B, 11e]. syn-(H,Cl)B (11a; 220 mg, 1.1 mmol) was mixed with acetic acid (20 mL) and anhydrous K₂CO₃ (1.0 g, 10 mmol) added. After CO_2 evolution ceased, 10% Pd/C (10 mg) was added and the whole stirred and warmed to 70 °C under 1 atm hydrogen. After 20 min, heating was discontinued, CH₂Cl₂ (100 mL) added, the solution filtered, and the solvent evaporated, acetic acid being removed under high vacuum. The residue was dissolved in CH_2Cl_2 (100 mL), the solution was treated with saturated aqueous NaHCO₃ and dried over $Mg_{2}SO_{4}$, and the solvent was removed. The residue was dissolved in the minimum quantity of CH2Cl2, placed on a silica gel column, and eluted with ethyl acetate. The fraction containing the product exhibits a beautiful deep violet fluorescence and vielded 45 mg (30%) of 11e: faintly yellow needles (from tetrahydrofuran); mp 302 °C; IR (KBr) 3180, 3100, 1750, 1735, 1670, 1430, 1300, 1280, 1250, 1135, 980 cm⁻¹; ¹H NMR (CD₃CN) 5.60 (d, 1 H), 7.76 (d, 1 H, J = 4 Hz) ppm; UV (CH₃CN) λ 385 nm (ϵ_{max} 5000, sh), 368 (6200), 240 (3300, sh), 218 (7600); fluorescence (CH₃CN) 398 nm, 415 415 (sh), ϕ_F 1.0; mass spectrum, $m/e \ 136 \ (M^+).$

9,10-Dioxa-syn-(hydrogen,chloro)(hydrogen,hydrogen)bimane [syn-(H,Cl)(H,H)B, 13a]. By following the hydrogenation of syn-(H,Cl)B through TLC and stopping the reaction at a stage when the blue fluorescence of the starting material is gone but the blue-violet fluorescence of the intermediate bimane is still present along with the violet fluorescence of syn-(H,H)B, the "mixed" bimane 13a may be isolated by chromatography on silica: yellow crystals (from CH₃CN); mp 253 °C; IR (KBr) 3160, 3120, 3060, 1740, 1670, 1530, 1440, 1310, 1270, 1210, 1090, 1030, 920, 900, 780 cm⁻¹; ¹H NMR (CD₃CN) 5.650 (d, 1 H), 7.760 (d, 1 H, J = 2.0 Hz), 7.840 (s, 1 H) ppm; UV (CH₃CN) λ 380 (ϵ_{max} 5800), 223 (6400); fluorescence (CH₃CN) 442 nm, $\phi_{\rm F}$ 0.92; mass spectrum, m/e 170 (M⁺).

9,10-Dioxa-syn -(hydrogen,bromo)(hydrogen,chloro)bimane [syn -(H,Br)(H,Cl)B, 13b]. Excess bromine was added to a solution of syn-(H,Cl)(H,H)B (13a, 5 mg) in CH₂Cl₂ (50 mL). After the mixture was stirred for 3 h, the solvent was evaporated to give an essentially quantitative yield of 13b: yellow crystals (from EtOAc); mp 200 °C dec; IR (KBr) 3140, 1720, 1670, 1530, 1440, 1250, 1180, 1100, 850, 790, 720 cm⁻¹; ¹H NMR (CD₃CN) 7.955 (s, 1 H), 7.985 (s, 1 H) ppm; UV (CH₃CN) λ 387 nm (ϵ_{max} 6900), 230 (6900), 255 (sh); fluorescence (CH₃CN) 444 nm ($\phi_{\rm F}$ 0.62); mass spectrum, m/e 249 (M⁺).

Hydrogenation of syn-(H,Br)B (11b) led to results similar to those described for syn-(H,Cl)B. Reductions which were allowed to continue for more than 1 h led to considerably decreased yields of syn-(H,H)B, presumably due to further hydrogenation.

9,10-Dioxa-*syn*-(carbomethoxy,hydrogen)bimane [*syn*-(COOCH₃,H)B, 6h]. *syn*-(COOCH₃,Cl)B (6d; (320 mg, 1 mmol) was hydrogenated according to the procedure for *syn*-(H,H)B to yield, after chromatography, 98 mg (39%) of 6h: yellow crystals (from *i*-PrOH); mp 164 °C; IR (KBr) 3160, 3120, 3000, 1725, 1670, 1545, 1470, 1380, 1270, 1250, 1170, 1150, 1000 cm⁻¹; ¹H NMR (CDCl₃) 3.95 (s, 3 H), 6.13 (s, 1 H) ppm; UV (CH₃CN) λ 401 nm (ϵ_{max} 5200, sh), 385 (6200), 246 (9000); fluorescence (CH₃CN) 430 nm, 455 (sh), $\phi_{\rm F}$ 0.65; mass spectrum, *m/e* 252 (M⁺).

9,10-Dioxa-syn-(carboethoxy,hydrogen)bimane [syn-(COOCH₂CH₃,H)B, 6l (R = CH₃CH₂, R₁ = H)]. Hydrogenation of 6a was carried out according to the procedure for syn-(H,H)B to yield, after chromatography, 6l: 15% yield; yellow crystals (from *i*-PrOH); mp 145 °C; IR (KBr) 3160, 3120, 3010, 1725, 1680, 1580, 1550, 1470, 1380, 1270, 1250, 1215, 1175, 1150, 1110, 1050, 1010 cm⁻¹; ¹H NMR (CDCl₃) 1.35 (t, 3 H), 4.30 (q, 2 H), 5.98 (s, 1 H) ppm; UV (CH₃CN) 400 nm (ϵ_{max} 5000, sh), 385 (6100), 245 (8400); fluorescence (CH₃CN) 430 nm, 450 (sh), $\phi_{\rm F}$ 0.50; mass spectrum, 286 (M⁺).

9,10-Dioxa-*syn*-(**carbomethoxy**,**iodo**)**bimane** [*syn*-(**COOCH**₃,**I**)**B**, **6j**]. Iodine monochloride (160 mg, 1.0 mmol) was added to *syn*-(**COOCH**₃,**H**)**B** (**6h**; 85 mg, 0.3 mmol) in CH₂Cl₂ (10 mL), the mixture stirred for 24 h, the solvent evaporated, and the residue crystallized from *i*-PrOH to yield 120 mg (80%) of **6j**: orange-yellow crystals (from *i*-PrOH); mp 125 °C; IR (KBr) 2950, 1780, 1740, 1700, 1470, 1420, 1400, 1350, 1250, 1170, 1125, 1100, 910 cm⁻¹; ¹H NMR (CDCl₃) 4.01 (s) ppm; UV (CH₃CN) 415 nm (ϵ_{max} 13 000), 273 (12 700), 212 (17 300); fluorescence (CH₃CN) 490 nm ($\phi_{\rm F}$ 0.24); mass spectrum, m/e 504 (M⁺).

9,10-Dioxa-syn - (carboethoxy,iodo) bimane [syn-COOCH₂CH₃,I)B, 6m (R = CH₃CH₂, R₁ = I)]. This compound was obtained in 80% yield from 6l by reaction with ICl according to the procedure for the methyl ester: yellow crystals (from *i*-PrOH); mp 129 °C; IR (KBr) 3000, 1755, 1620, 1550, 1450, 1420, 1380, 1320, 1250, 1180, 1130, 1000 cm⁻¹; ¹H NMR (CDCl₃) 1.44 (t, 3 H), 4.45 (q, 2 H) ppm; UV (CH₃CN) λ 423 nm (ϵ_{max} 12500), 273 (7600), 212 (12000); fluorescence (CH₃CN) 500 nm ($\phi_{\rm F}$ 0.15); mass spectrum, m/e 532 (M⁺).

9,10-Dioxa-syn -(carboethoxy,phenylthio)bimane [syn-(COOCH₂CH₃,C₆H₅S)B, 12]. A solution of the diester syn-(COOCH₂CH₃Cl)B (6a; 110 mg, 0.3 mmol) in dry THF (5 mL) was added to a solution of lithium thiophenoxide (thiophenol (72 mg, 0.6 mmol) was added with a syringe to butyllithium (4 μ L of 15% solution in pentane) in THF (5 mL)). After 5 h, the solvent was evaporated, and the residue was chromatographed on silica gel to yield 55 mg (50%) of 12: orange-red crystals (from *i*-PrOH); mp 116–118 °C; IR (KBr) 3000, 2950, 1755, 1620, 1570, 1550, 1480, 1470, 1420, 1400, 1385, 1350, 1310, 1180, 1120, 1000, 950 cm⁻¹; ¹H NMR (CDCl₃) 1.36 (t, 3 H), 4.43 (q, 2 H), 7.43 (m, 5 H) ppm; UV (CH₃CN) 445 nm (ϵ_{max} 3300), 245 (19000); fluorescence (dioxane) 590 nm ($\phi_{\rm F}$ 0.027); mass spectrum, m/e 496 (M⁺).

9,10-Dioxa-syn-(carboethoxy,bromomethyl)bimane [syn-(COOCH₂CH₃,BrCH₂)B, 6i]. A mixture of syn-(COOCH₂CH₃,CH₃)B (6c; 62 mg, 0.2 mmol), N-bromosuccinimide (120 mg, 0.8 mmol), and benzoyl peroxide (5 mg) in CCl₄ (15 mL) was refluxed for 3 h, the precipitated succinimide and Nbromosuccinimide were filtered off after cooling, the solvent was evaporated, and the residue was quickly chromatographed on a silica gel column (eluant CH₂Cl₂-cyclohexane, 1:1) protected from light to yield 6i: 56 mg; yellow crystals (from *i*-PrOH); mp 92 °C; IR (CDCl₃) 2940, 1770, 1740, 1580, 1450, 1250 cm⁻¹; ¹H NMR (CDCl₃) 1.399 (t, 3 H), 2.057 (s, 2 H), 4.400 (q, 2 H); UV (CH₃CN) 412 nm (ϵ_{max} 9400), 243 (9900); fluorescence (CH₃CN) 470 nm ($\phi_{\rm F}$ 0.27); mass spectrum, m/e 306 (M⁺ - 2Br).

Registry No. 3a, 108-56-5; **3b**, 759-65-9; **4a**, 58607-90-2; **4b**, 79746-67-1; **4c**, 60178-92-9; **5a**, 79746-68-2; **5b**, 79746-69-3; **5c**, 79746-70-6; **5d**, 79746-71-7; **5e**, 79746-72-8; **5f**, 79746-73-9; **6a**, 79746-74-0; **6b**, 79746-75-1; **6c**, 79746-76-2; **6d**, 79746-77-3; **6e**, 79746-82-0; **6k**, 79746-83-1; **6l**, 79746-80-8; **6i**, 79746-81-9; **6j**, 79746-82-0; **6k**, 79746-83-1; **6l**, 79746-84-2; 7, 68654-32-0; 8, 79746-85-3; **8a**, 79746-86-4; **9** ($\mathbf{R}_1 = C\mathbf{H}_3$), 79766-55-4; **10a**, 79746-87-5; **11a**, 79766-85-5; **11b**, 79746-88-6; **11c**, 79746-89-7; **11d**, 79746-90-0; **11e**, 79769-56-5; **12**, 79746-91-1; **13a**, 79746-92-2; **13b**, 79746-93-3.

Supplementary Material Available: Table of atomic coordinates and thermal parameters for syn-(COOCH₃,CH₃)B (1 page). Ordering information is given on any current masthead page.